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➢ The Diffusion Size Classifier DiSCmini is a comparatively simple and robust

instrument which can determine three quantities simultaneously with a high

time resolution of 1s:

▪ Particle number concentration: 1E3 to 1E6 pt/ccm

▪ Average particle diameter: 10 to 300 nm

▪ Lung-deposited surface area: μm2/cm3

➢ The instrument is based on charging and current detection, there is no working

fluid like in a CPC.

testo DiSCmini overview

Small is Beautiful
DiSCmini. The smallest particle number counting instrument on the market



Corona charger Diffusion stage Backup filter

Inlet

Corona supply voltage Grid voltage IIon Idiff Ifilt

Operating principle

➢ Particles are labeled with positive charges in a unipolar charger, so that they can later be
detected by the current they induce

➢ Particles are deposited by diffusion in a "diffusion stage" and detected as an electrical current
D=Idiff

➢ Remaining particles end up in a filter stage and also produce an electrical current F=Ifilt

➢ DiSCmini measures both currents D and F simultaneously, with 1s time resolution



Corona charger Diffusion stage Backup filter

Inlet

Corona supply voltage Grid voltage IIon Idiff Ifilt

Operating principle

➢ Diffusion stage penetration is size-selective

➢ Measured ratio D/F=Idiff / Ifilt → particle diameter

➢ Charge per particle is a function of particle diameter → once the particle diameter is known,
DiSCmini computes the particle number from the total current Idiff + Ifilt and the flow rate

➢ Diffusion charger DC signal correlates well with lung-deposited (alveolar or tracheobronchial)
surface area



Operating principle

http://ioner.eu/portfolio/discmini/



Specifications

Mean particle size 10…300nm (modal diameter)

Particles counted 10....700 nm

Particle 
concentration

Detectable particle concentrations depend on particle 
size and averaging time. Typical values are given below.
20nm: 2E3….1E6 pt/ccm
100nm: 5E2…5E5 pt/ccm

Accuracy
±30% in size and number typical; ±5E2/ccm absolute in 
number.

Time resolution 1 second

Dimensions 180 x 90 x 42,5 mm

Weight 0,7 kg

Instrument specs



Operating conditions

Flow rate 1,0 L/min +- 0,1 L/min

Pressure
800…1100 mbar abs ambient
Δp max. at inlet: +/- 20 mbar

Temperature 10…30 °C; Relative humidity <90 %

Power requirements
The battery charger is compatible with the any 100-
120 volt or 200-240 volt 50/60 Hz AC wall outlet

Battery lifetime
8 hours typical; varies with ambient temperature. 
Charging time 2-4 hours depending on charger and 
status of battery

Instrument specs



Data handling
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Performance: particle characterization

testo DiSCmini features:

❖ Simultaneous particle number concentration, size and LDSA

❖ Wide particle number concentration range

❖ 1 Hz resolution

❖ High sensitivity



Performance: measurement range



• Ambient work area monitoring

• Personal exposure monitoring

• Point source location monitoring

• Background/baseline monitoring

• Engineering studies

• Etc.....

Application examples



Process or location
Concentration
(particles/cm3)

Particle size 
(nm)

outdoor, office up to 10.000

silicon melt up to 100.000 280-520

metal grinding up to 130.000 17-170

soldering up to 400.000 36-64

plasma cutting up to 500.000 120-180

bakery up to 640.000 32-109

airport field up to 700.000 < 40

welding 100.000 – 40.000.000 40-600

Application examples



Application #1: Air quality monitoring 
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Application #2: Personal exposure
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Application #3: Occupational exposure monitoring 
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Application #3: Occupational exposure monitoring 
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